您的位置:首页 > 技术文章 > 技术详情

红外线灯加热原理

红外线灯加热原理
红外线加热原理
 
 
 

    工业加热与乾燥的方法很多,自能源危机以来,世界各国為提高能源使用效率与发展能源多元化,纷纷研发各种节约与替代能源技术,其中辐射加热乾燥由於方法的特殊性,被证实為*有效率的加热与乾燥技术之一,而被广泛地用於取代传统的热风式加热与乾燥系统。辐射加热与乾燥包括红外线、紫外线、微波/射频、电子束与雷射等,其中红外线加热乾燥是利用电磁辐射热传原理,以直接方式传热而达到加热乾燥物体的目的,从而避免加热热传媒体导致的能量损失,有益能源节约,同时红外线因有產生容易,可控性良妤等特质,而有加热迅速、乾燥时间短、生產力提高,產品品质改进及设备空间节省等优点
   红外线的波长区间大致為0.75?至1000?m,因其波长位於红色光波长(0.6?m至0.75?m左右)外而得名。在低於2000?C的常规工业热工范围内,红外线是*主要的热射线。人们有时将红外线又划分為「近红外」、「中红外」、「远红外」等若干小区间,所谓的远、中、近,是指其在电磁波谱中距红色光的相对距离远近而言。
   採用红外线加热是否有效,主要取决於被加热物体的吸收程度,吸收率越高,红外线辐射效果就越好。而吸收率取决於被加热物质的类别、表面状态、红外线辐射源的波长等。物质反射的辐射能量与入射能量的比值叫反射率?,不同材料和不同表面状况的反射率各不相同。物质透过的辐射能量与入射能量的比值叫穿透率?,穿透率随材料的性质及厚度不同而变化。不同材料的有效穿透范围也不一样。通常把非透明材料的穿透率看作零。一般金属晶体十分緻密,透过表面的电磁辐射能在很短的距离内迅速衰减,因此热辐射对金属的穿透深度在微米数量级上。而非金属材料分子结构不很緻密,在常温下不同非金属物质各自具有特徵振动频率,因此当入射的电磁波到达界面时,电磁波很少被反射,较易穿过界面进入表层,有些激起共振变為热量,有些不能激起共振的则受到折射、散射和反射作用。由於实际物体都不是单一结构的单纯物质,故有些未被表层吸收的辐射波,在深入过程中还会被其它物质的共振而不同程度地加以吸收。只有在穿过全部厚度时,未破吸收的那部分辐射能量才能透过。因此非金属的穿透深度比金属的要高。
   红外线加热优势及效率,红外线乾燥加热方式在近几年来则以惊人的发展速度被接受,并被实际使用於各层次,主要是红外线乾燥方式有下述之优点:
    1. 具有穿透力,能内外同时加热。
    2. 不需热传介质传递,热效率良好。
    3. 可局部加热,节省能源。
    4. 提供舒适的作业环境。
    5. 节省炉体的建造费用及空间,组合、安装及维修简单容易。
    6. 乾净的加热过程。
    7. 温度控制容易、且升温迅速,并较具**性。
    8. 热惯性小,不需要暖机,节省人力。
   因為红外线加热其有上述优点,因比获得高效率高均一性的加热是可能的进而获得高品质的產品

粤公网安备 44030602001500号